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Abstract
The breakage equation with a homogeneous erosion type kernel is studied
herein. This type of kernel renders the handling of the breakage equation
by conventional techniques very difficult, necessitating alternative problem
solving approaches. Exploiting the structure of the erosion-breakage kernel,
a new particle erosion equation is derived as the first-order term of a formal
perturbation expansion with respect to kernel parameters. However, even this
new equation is very difficult to treat because of the multimodality of its solution
associated with the developing generations of fragments. In order to overcome
this difficulty, the problem is decomposed into a system of equations for the size
distribution of the generations of fragments which admits unimodal solutions.
The properties and the methods of solution (analytical, method of moments,
etc) are studied extensively. Using solution techniques developed in this paper,
results are reported for some simple cases, revealing a very interesting and
rather unusual structure of the solutions of the erosion-breakage equation.

PACS number: 0590

1. Introduction

The phenomenon of breakage is very important in science and engineering. It is encountered
in the literature under several names depending on the particular physical situation, for
example crushing, milling, grinding, fracture, partition, disintegration, shattering, scission
and fragmentation. The list of application areas is enormous. Examples in process technology
include the combustion of coal (percolative fragmentation) [1], polymer processing (polymer
degradation) [2], mineral processing (grinding) [3], biotechnology (breakage) [4], fluidized
bed reactors (attrition of catalyst particles) [5], slurry flow [6] and crystallization (crystal
breakage) [7]. Applications in other scientific fields are also numerous, ranging from
meteorology (rain formation) [8] and astronomy (size distribution of asteroids) [9] to the
car parking problem of statistical physics [10].
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In all application areas there is a clear distinction between the two modes of the breakage
process. When the breakage event produces a ‘coarse’ fragment of size close to the parent
particle and a number of much smaller ‘fine’ particles, the process is called particle erosion [11],
attrition [12], abrasion [13] or chain-end scission [14] depending on the physical situation. In
any other case the process is usually referred to as fracture. Redner [15] further divides
the fracture mode into cleavage (involving a small number of fragments of similar size) and
destructive breakage or shattering (producing many fragments with a wide spectrum of sizes).
The above modes of breakage are shown schematically in [13,15]. In many cases the two main
modes (particle erosion and fracture) may occur simultaneously as separate processes [11,16].

The first mode of breakage (referred to as erosion breakage henceforth) is at least as
important as fracture (to be called simply breakage hereafter) in many application areas. It
must be pointed out here that the methods for solving the breakage equation are generally
very efficient in the case of fracture, but quite inefficient in the erosion case. A fundamentally
different approach is required for tackling the latter. In the simplest case of erosion breakage,
that of fixed-size fragments (independent of the parent particle size), the breakage equation
can be replaced by a first-order hyperbolic PDE [16], which is well known from the study of
dissolution of solids in liquids [17] and aerosol evaporation [18]. The new equation can be
derived in a way similar to that of the Fokker–Planck equation in statistical physics [19] and
in many cases it is used (e.g. [20]) directly without reference to the breakage equation.

Another simple class of erosion-breakage processes is that of a fragment size directly
proportional to the size of the parent particle (homogeneous breakage kernel). In the majority of
studies of the breakage problem, a homogeneous kernel is assumed. It is, therefore, reasonable
to select to study the erosion-breakage process with such a kernel. Furthermore, the solution
of this problem has a much richer structure in comparison with the relevant problem of fixed
fragment size, mainly treated in the literature so far [11, 16, 20].

The structure of this paper is as follows: section 2 includes an outline of the general
breakage equation along with some solution techniques, an analysis of the properties of the
general breakage kernel (with particular emphasis on the homogeneous erosion kernel) and
the derivation of the erosion equation from the general breakage equation. In section 3 the
new erosion equation is decomposed into a system of partial integrodifferential equations.
The analytical solution of this system is presented and an approximate solution based on the
method of moments with log-normal distribution is discussed in some detail. Finally, using
the methods of solution described in section 3, typical results (analytical and numerical) for
simple test cases (such as constant breakage rate and monodisperse initial distribution) are
obtained and discussed in section 4.

2. Problem formulation

2.1. The breakage equation

The breakage process can be described in general by the following linear partial
integrodifferential equation:

∂f ′(x ′, τ )
∂τ

=
∫ ∞

x ′
p′(x ′, y ′)b′(y ′)f ′(y ′, τ ) dy ′ − b′(x ′)f ′(x ′, τ ) (1)

where τ is time, x ′ particle volume, f ′(x ′, τ ) particle number density distribution, b′(x ′)
breakage rate and p′(x ′, y ′) the probability distribution of particles of volume x ′ resulting
from the breakup of a particle of volume y ′.

Let f ′
0(x

′) = f ′(x ′, 0) be the initial particle size distribution. The total volume
concentration, the total number concentration and the mean size of the initial distribution
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are, respectively,

M =
∫ ∞

0
xf ′

0(x) dx (2a)

N0 =
∫ ∞

0
f ′

0(x) dx (2b)

x0 = M

N0
. (2c)

The functions and variables already introduced can be expressed in dimensionless form as
follows:

x = x ′

x0
y = y ′

x0
t = b′(x0)τ f (x, t) = x0f

′(x ′, t)
N0

b(x) = b′(x ′)/b′(x0) p(x, y) = p′(x ′, y ′)/x0

(3)

and equation (1) can be written as

∂f (x, t)

∂t
=
∫ ∞

x

p(x, y)b(y)f (y, t) dy − b(x)f (x, t). (4)

This equation has been solved by Ziff and McGrady [2] for a binary breakage kernel
assuming a power series with respect to time and substituting in equation (4) to obtain recursive
relations for the series coefficients, which are functions of particle size x. The generalization
of this method for a general kernel is straightforward. For a monodisperse initial distribution
f0(x) = δ(x − 1) the solution of equation (4) for arbitrary breakage kernel and rate is

fδ(x, t) =
∞∑
i=0

A(i)(x)
t i+1e−t

(i + 1)!
+ δ(x − 1)e−t (5a)

where

A(i+1)(x) =
∫ 1

x

1

y
p(x, y)b(y)A(i)(y) dy + (1 − b(x))A(i)(x)

i = 0, 1, 2, . . . ,∞ and A(0)(x) = p(x, 1).
(5b)

It will be pointed out that the series solution represented by equations (5a), (5b) for constant
breakage rate is reported by Lensu [21] by using the Mellin (moment) transformation [22].
As regards particular cases for the breakage kernel, the one with a power-law breakage kernel
and power-law breakage rate has received considerable attention; i.e. McGrady and Ziff [23]
gave a series solution based on the same approach used for the general kernel whereas Huang
et al [24] obtained directly the (equivalent) solution in terms of the confluent hypergeometric
function using Laplace transform techniques.

Due to the linearity of the breakage equation, the superposition principle holds. This
means that the solution for an arbitrary initial distribution can be obtained from the solution
for the monodisperse initial distribution as

f (x, t) =
∫ ∞

0
f0(z)

1

z
fδ(x/z, b(z)t) dz (6)

where when the breakage kernel and rate do not depend explicitly on parent particle size
(homogeneous case) the function fδ is independent of z and must be evaluated once. In general
the function fδ must be computed via an equation similar to (5a) for every z value. The usual
approach for the application of the superposition principle is to solve for the dimensional
monodisperse distribution δ(x− z) and to integrate over z [25]. The derivation of equation (6)
is not so straightforward; nevertheless, it depicts better the fact that only one solution (that for
initial distribution δ(x − 1)) is needed for the case of homogeneous breakage kernel and rate.
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2.2. Properties of erosion-breakage kernels

In general the function p(x, y) should satisfy the following requirements:

(i) Conservation of mass:∫ y

0
xp(x, y) dx = y. (7)

This equation stipulates that the total volume of particles resulting from the breakup of a
particle of volume y must be equal to y. In some studies in the physics literature a more
general condition is assumed by multiplying the right-hand side of equation (7) by (1−λ)

where 0 < λ < 1 [26]. This means that in each breakage event a fraction λ of the mass
of the parent particle disappears. This case will not be considered in this paper.

(ii)
∫ k

0
xp(x, y) dx �

∫ y

y−k

(y − x)p(x, y) dx where k <
y

2
. (8)

This expression states the requirement that only breakage events take place with no
rearrangement of mass allowed. It is an absolute condition based on the physical
requirement that when breakage occurs such that a particle x � y/2 is formed, the
volume contained within the smaller fragments (y − x) must contribute to the total
volume of the fragments smaller than (y − x). Further analysis concerning this condition
can be found elsewhere [23]. For binary breakage (two fragments per parent particle),
the above restriction is simplified being equivalent to a symmetric kernel in the sense
p(x, y) = p(y − x, y).
The above restriction on the form of breakage kernel is very important but it seems to be
overlooked in the literature of breakage; this leads to physically unrealistic kernels used
to fit experimental data. For example in [27] a kernel is employed (power law kernel
with positive exponent) which violates condition (ii) and does not have any physical
significance, even if it is capable of fitting the experimental data. In that case a different
breakage mechanism (and different breakage kernel) may be dominant.

(iii) The number of particles resulting from breakage of a single particle of volume y is given
as

v(y) =
∫ y

0
p(x, y) dx. (9)

According to the homogeneous erosion-breakage kernel examined in this paper, it is assumed
that the particle size is continuous in all scales and the size of the fragments is defined as a
fraction of the parent particle size independent of the absolute value of the latter. In turn, the
fragments suffer breakage according to the same homogeneous breakage law. The homogeneity
of the kernel implies that it can be written in the form p(x, y) = P(x/y)/y. The above
properties (i) and (iii) of the breakage kernel may be transformed, respectively, to∫ 1

0
zP (z) dz = 1 (10)

v =
∫ 1

0
P(z) dz. (11)

The erosion type kernel has the following general form:

P(z) = P1(z) for 0 < z < ε1

= 0 for ε1 < z < ε2

= P2(z) for 1 − ε2 < z < 1 (12)
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with ε2 � 1. Using the above property (ii) results in the restriction ε1 � ε2, where the equality
sign is for the binary breakage case. The parent particles retain their identity (and total number)
so ∫ ε2

0
P2(1 − z) dz = 1 (13a)∫ ε1

0
P1(z) dz = v − 1. (13b)

Substituting the kernel into the mass conservation equation (10), rearranging and using (13a)
results in ∫ ε1

0
zP1(z) dz =

∫ ε2

0
zP2(1 − z) dz. (14)

It must be noted that many kernels defined in the entire interval [0,1] can be cast in the form
of the erosion kernel with a very good approximation. For example the family of the breakage
kernels of sum form developed by Hill and Ng [28] are practically zero everywhere except at
the edges of the interval [0,1], for high values of its exponent. This is also the case for the
U-type kernel developed by Kostoglou et al [29] for some values of its parameters.

2.3. The erosion equation

The breakage equation (4) with the homogeneous erosion breakage kernel (12) takes the form

∂f (x, t)

∂t
=
∫ x/(1−ε2)

x

1

y
P2(x/y)b(y)f (y, t) dy − b(x)f (x, t)

+
∫ ∞

x/ε1

1

y
P1(x/y)b(y)f (y, t) dy. (15)

The first integral is along a small region of sizes greater than x. A new integration variable s
is used to denote the fractional deviation from x. The new variable is defined by the equation
y = (1 + s)x so that 0 < s < ε2/(1−ε2). The Taylor series expansion around x of the product
b(y)f (y, t) appearing in the integral is as follows:

b(y)f (y, t) = b(x + sx)f (x + sx, t) = b(x)f (x, t) +
∞∑
i=1

(sx)i

i!

∂ib(x)f (x, t)

∂xi
. (16)

After substitution of the above series, the first and second terms on the right-hand side of
equation (15) take the form

(K0 − 1)b(x)f (x, t) +
∞∑
i=1

xiKi

i!

∂ib(x)f (x, t)

∂xi
(17)

where

Ki =
∫ ε2/(1−ε2)

0

si

1 + s
P2

(
1

1 + s

)
ds =

∫ ε2

0

zi

(1 − z)i+1
P2(1 − z) dz. (18)

In order to obtain a formal expansion of the breakage equation, with respect to parameter ε2,
the following series expansion is used:

zi

(1 − z)i+1
=

∞∑
j=i

aij z
j (19)

where aii = 1 and aij = 1
(j−i)!

∏j−i

k=1 (i + k) for j > i.
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Substitution of the above series in the expression for Ki results in

Ki =
∞∑
j=i

aij nj ε
j

2 (20)

where nj are defined as

nj = ε2

∫ 1

0
zjP2(1 − zε2) dz (21)

and represent some kind of dimensionless moments of the kernel P2. Using the condition
n0 = 1 (from equation (13a)), which is an intrinsic property of the breakage kernel, it can
be inferred that the nj are not a function of ε2 and the series in equation (20) is a formal
perturbation expansion of the Ki for small ε2.

The series form of Ki is substituted in the breakage equation, the summation order of the
double sum term is reversed and the terms with the same order of ε2 dependence are collected
to give the perturbation expansion with respect to ε2

∂f (x, t)

∂t
=

∞∑
j=1

njε
j

2

[
a0j b(x)f (x, t) +

j∑
i=1

aij
xi

i!

∂ib(x)f (x, t)

∂xi

]

+
∫ ∞

x/ε1

1

y
P1(x/y)b(y)f (y, t) dy. (22)

The terms in the brackets for j = 1 and 2 can be written in the form

j = 1
∂xb(x)f (x, t)

∂x
(23a)

j = 2 2
∂xb(x)f (x, t)

∂x
− b(x)f (x, t) +

x2

2

∂2b(x)f (x, t)

∂x2
. (23b)

For moderate values of ε2, more than one term of the expansion must be used, in which case
the j = 2 term (and higher-order terms) renders the new equation quite complicated. It will be
noted, however, that for this case (moderate ε2) the original breakage equation can be handled
easily with existing methods (series solution (5) or numerically [30]). The picture is quite
different as ε2 becomes small. In this case the solution of the original equation becomes more
difficult. However, in the new equation it suffices to retain only the first term of the expansion,
that has a very simple form. It is interesting that the leading-order mass loss term (23a) is
equivalent to that of erosion-breakage with fragments of fixed sizes and breakage rate xb(x).
This similarity does not hold for higher-order terms as one can ascertain by examining the
j = 2 term (23b), which is quite different for the two processes [19]. Finally the erosive
breakage equation for a homogeneous kernel takes the form

∂f (x, t)

∂t
= ∂[gxb(x)f (x, t)]

∂x
+
∫ ∞

x/ε1

1

y
P1(x/y)b(y)f (y, t) dy (24)

where g = n1ε2 is the volume fraction that a parent particle loses per breakage event and the
product gxb(x) is the mass erosion rate.

3. Methods of solution

3.1. Decomposition to generations—analytical solution

By inspection of the series solution (5a) of the original breakage equation one can infer that
the ith term of the series represents the size distribution of the particles that have undergone
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breakage i + 1 times. The additional term is simply the size distribution of the remaining
(unbroken) initial particles. For breakage kernels which are not close to the uniform one, the
various terms of the series can be widely differing functions, resulting in a multimodal final
distribution. For this reason it would be very useful to decompose the original equation to a
hierarchy of equations that must be solved for the modes of the distribution. This approach
has been exploited by Liou et al [31] for the solution of the growth–breakage population
balance describing the dynamics of microbial and cell cultures. The potential of the approach
of Liou et al to overcome problems encountered in the conventional solution methods of the
population balance equation arising in biotechnology has been stressed by Villadsen [32].
In [31] the modes of the distribution are called generations (this term is used henceforth) and
the development of the method is rather intuitive and based on biological system considerations
and not on mathematical arguments as in this paper. Furthermore, the direct application of the
method of generations to equation (4) for an erosion kernel is useless because an enormous
number of generations is needed to describe the evolution of the eroded particles while only
a few generations are needed for the fragments. This leads to a reformulation of the method
of generations so that after a breakage event only the small fragments are assigned a new
generation index whereas the large fragment remains in the same generation. This approach
is equivalent to applying the method of generations directly to equation (24) instead of (4).
For convenience the index i = 1 represents the eroded initial particles, and the index i > 1
particles which are the fine fragments of a cascade of i − 1 breakage events. In what follows
the term parent particles is used for the generation with i = 1 and the term fragments is used
for the other generations.

The hierarchy of equations for the size distribution of the generations is

∂f1(x, t)

∂t
= ∂[gxb(x)f1(x, t)]

∂x
(25a)

∂fi(x, t)

∂t
= ∂[gxb(x)fi(x, t)]

∂x
+
∫ ∞

x/ε1

1

y
P1(x/y)b(y)fi−1(y, t) dy

for i = 2, . . . , N − 1 (25b)
∂fN(x, t)

∂t
=
∫ ∞

x/ε1

1

y
P1(x/y)b(y)fN−1(y, t) dy (25c)

where it has been assumed that no breakage occurs for particles of the N th generation. The
above equations must be solved successively with initial conditions f1(x, 0) = f0(x) and
fi(x, 0) = 0 for i > 1. The complete size distribution is obtained by a simple superposition
of the size distributions of the generations, as

f (x, t) =
N∑
i=1

fi(x, t). (26)

The method of generations is considered useful for the general breakage problem, but it seems
to be perfectly suited to the present case of erosive breakage. In the latter, the solution
displays important features in several size scales so that an appropriate discretization for a
successful numerical treatment seems unfeasible. On the other hand the solutions of the
generations equations are well behaved functions amenable to conventional treatment. A
particular advantage of the generation equations is that they can be solved analytically using
the method of characteristics [33]. Taking into consideration the general solution of the growth
population balance given by Williams [34] the following result is obtained:

f1(x, t) = 1

xb(x)
B−1(B(x) + t)b[B−1(B(x) + t)]f0(B

−1(B(x) + t)) (27a)



1732 M Kostoglou and A J Karabelas

fi(x, t) = 1

xb(x)

∫ t

0
x(t ′)b(x(t ′))

∫ ∞

x(t ′)/ε1

1

y
P1(x(t

′)/y)b(y)fi−1(y, t
′) dy dt ′

for i = 2, . . . , N − 1 (27b)

fN(x, t) =
∫ t

0

∫ ∞

x/ε1

1

y
P1(x/y)b(y)fN−1(y, t

′) dy dt ′ (27c)

where B(x) = ∫
1

gxb(x)
dx, B−1(z) is the solution to equation z = B(x) and x(t ′) =

B−1(t − t ′ + B(x)).

3.2. Moments method

Although the above analytical solution can be used for practical purposes [31], it is rather
complicated. On the other hand, frequently the gross features and not the details of the
distribution are of interest. This is the reason for extensively using the method of moments for
solving population balances [35]. Additionally, the method of moments has been used in the
physics literature to obtain a physical insight from the structure of the solution [36]. In order
to proceed with the method of moments and obtain analytical solutions the breakage rate is
assumed to be of the power-law form b(x) = xν .

The kth moment of the ith generation is defined as

Mi,k =
∫ ∞

0
xkfi(x, t) dx. (28)

The set of equations (25) is multiplied by xk and integrated with respect to x from 0 to ∞.
The product rule is used for integrating the term with the derivative together with the fact
that f (∞, t) = 0 due to physical considerations. As regards the double integral arising from
the integral term, the order of integration is interchanged and the inner variable is scaled
appropriately to permit the separation of the two integrals according to a standard procedure
in the breakage literature. The resulting system, that describes the evolution of moments, is
(i = 1, 2, . . . , N , k = 0, 1, 2, . . . ,∞)

dMi,k

dt
= −(1 − δiN )gkMi,k+ν + (1 − δi1)JkMi−1,k+ν (29)

where the Kronecker delta (δij is equal to 1 for i = j and equal to 0 for i �= j ) is used to obtain
a system in compact form, and

Ji =
∫ ε1

0
ziP1(z) dz. (30)

This quantity is of the order of εi1 and it is in general different from the quantity niε
i
1, except

for the case i = 1 where J1 = g, and for the binary kernel where the two quantities are equal
for every value of i. The above system is solved with initial conditions M1,k(0) = Mk0 (the
moments of the initial size distribution) and Mi,k(0) = 0 for i > 1.

For the case of constant breakage rate (exponent ν = 0) the system (29) is closed and
admits the following analytical solution:

Mi,k = Mk0J
i−1
k e−gkt t i−1

(i − 1)!
for i = 1, . . . , N − 1 (30a)

MN,k = Mk0J
N−1
k

1

(N − 2)!

[
(N − 2)!

(gk)N−1
− e−gkt

gk

N−2∑
i=0

(N − 2)!tN−2−i

(gk)i(N − 2 − i)!

]
. (30b)

In the more general case of arbitrary ν the system is not closed with more unknowns
than equations. A correlation between the moments (that is, an assumption for the particular



On the breakage problem with a homogeneous erosion type kernel 1733

shape of the distribution) is needed in order to close the system. The usually assumed shapes
are the log-normal distribution for coagulation or/and growth equations [37] and the gamma
distribution for the breakage equation [38]. Although the original equation is of the breakage
type, the derived erosion equation for a particular generation, which is to be solved with the
moments method, is of the growth type; thus, the assumption of the log-normal distribution
is the preferred choice. More specifically, it is assumed that the size distribution of the ith
generation has the form

fi(x, t) = Ni√
2πσi

1

x
exp

[
− 1

2σi
ln2

(
x

x̄i

)]
(31)

where Ni = Mi,0 is the dimensionless number concentration, σi is the dispersivity defined as
σi = ln(Mi,2Mi,0

M2
i,1

) and x̄i is the logarithmic mean size of the distribution. The mass fraction

ϕi = Mi,1 is related to the above quantities through

ϕi = Nix̄i exp
(σi

2

)
. (32)

After some algebra the following system for the evolution of the quantitiesNi , ϕi , σi is derived:

dNi

dt
= (1 − δi1)J0N

1−ν
i−1 ϕ

ν
i−1 exp

(
ν2 − ν

2
σi−1

)
(33a)

dϕi
dt

= −(1 − δiN )g
ϕν+1
i

Nν
i

exp

(
ν2 + ν

2
σi

)
+ (1 − δi1)g

ϕν+1
i−1

Nν
i−1

exp

(
ν2 + ν

2
σi−1

)
(33b)

dσi
dt

= (1 − δi1)J0
ϕν
i−1

NiN
ν−1
i−1

exp

(
ν2 − ν

2
σi−1

)
+ (1 − δiN )2g

ϕν
i

Nν
i

exp

(
ν2 + ν

2
σi

)

−(1 − δi1)2g
ϕν+1
i−1

ϕiN
ν
i−1

exp

(
ν2 + ν

2
σi−1

)
− (1 − δiN )2g

ϕν
i

Nν
i

exp

(
ν2 + 3ν

2
σi

)

+(1 − δi1)J2
Niϕ

ν+2
i−1

ϕ2
i N

ν−1
i−1

exp

(
(ν + 2)(ν + 1)

2
σi−1 − σi

)
. (33c)

The above system of ODEs has to be solved for i = 1, 2, . . . , N with initial conditions
N1 = ϕ1 = 1, σ1 = σ0 and Ni = ϕi = σi = 0 for i > 1. Special care must be taken
in the numerical integration of this system because for i > 1 it is singular at t = 0. Thus,
the integration must be initialized using an equivalent non-singular system including only the
source terms (associated with the i − 1 generation). To continue, at a small but finite value of
time, this simplified system is replaced by the complete one (equations (33)). The advantage
of using the dispersivity σ instead of M2 is that σ is of order 1 whereas Mi2 tends to sharply
decrease (by orders of magnitude) as the generation index i increases.

The above method with a log-normal distribution can be extended to include more than
three moments via a generalized correlation between moments [39]. Also the restriction of the
power form for b(x) can be relaxed via the quadrature method of moments [40]. Overall, the
log-normal approximation is considered the best compromise between reduced computational
effort and adequate level of accuracy to obtain the salient features of the evolving distributions.
It is worth noting that the solution of the breakage equation with constant breakage rate
takes asymptotically the log-normal form [41, 42]. Another interesting observation is that
the multimodal log-normal method used here for the solution of the erosive breakage equation
is a formal equivalent of bimodal [43] and trimodal [44] log-normal methods of moments that
have been used extensively for solving the general dynamic equation of aerosols.
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4. Case study

4.1. Binary erosion-breakage kernels

The simplest erosion kernels will be described next. These are binary kernels such that
ε1 = ε2 = ε and P1(z) = P2(1 − z); the simplest is the monodisperse erosion kernel
P1(z) = δ(z − ε) for which Ji = εi . The uniform erosion kernel is P1(z) = 1/ε with
Ji = εi/(i + 1). The power-law erosion kernel that assigns greater probability to smaller
fragments has the form P1(z) = (n + 1)/ε(1 − z/ε)n with Ji = B(i + 1, n + 1), where B(x, y)
is the beta function. Obviously the uniform kernel is a member of the family of the power
kernels with n = 0.

4.2. Constant-breakage-rate case

The particular case of constant breakage rate (ν = 0) is studied here in detail because it is
amenable to a simplified treatment and its solution exhibits a very interesting behaviour. Using
equation (27a) for ν = 0 results in

f1(x, t) = egtf0(xegt ) (34)

irrespective of the type of breakage kernel. The monodisperse erosion-breakage kernel admits
an analytical solution as follows. Substituting the monodisperse kernel in equation (27b) and
using the characteristic x(t ′) = xe−g(t−t ′) results in the recursive relation (i = 2, . . . , N − 1):

fi(x, t) =
∫ t

0
fi−1

(
xeg(t−t ′)

ε
, t ′
)

eg(t−t ′) dt ′. (35)

Using f1 to start with, the recursive integration can be performed analytically to obtain

fi(x, t) = eεt

εi−1

t i−1

(i − 1)!
f0

(
eεt

εi−1

)
. (36)

From the first two moments of the above distributions (or alternatively using equation (30a))
one obtains

Mi,0 = t i−1

(i − 1)!
(37a)

Mi,1 = t i−1

(i − 1)!
εi−1e−εt . (37b)

The well known self-similarity transformation, originally proposed by Friedlander [45] for the
solution of the coagulation equation, is here defined at the generation level as

f̄i(x̄) = Mi,1

M2
i,0

f

(
xMi,0

Mi,1

)
. (38)

Substitution into equation (36) gives f̄i(x̄) = f0(x̄), which means that the shape of the size
distribution for each generation is similar to that of the initial distribution. This type of
self-similarity is quite different from the conventional one since it does not hold only in the
large-time limit but for all times, and it is not independent of the initial distribution, but it has
exactly its shape. The present type of self-similarity has also been noticed in the study of the
(equivalent to the i = 1 equation of the present problem) polymer degradation with chain-end
scission [19], a case for which it has been argued that no self-similarity solution exists [46].
The above (generation-level) self-similarity solution is restricted to constant breakage rate
(ν = 0) and monodisperse erosion kernel. Furthermore, it should not be confused with the
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Figure 1. Particle size distribution for constant breakage rate and monodisperse binary erosion
breakage kernel (ε = 0.1) for two values of breakage time. Initial condition f0(x) = xe−x .

global asymptotic self-similarity solution which exists for every homogeneous breakage kernel,
including the homogeneous erosion kernel studied here.

An interesting consequence of equation (36) is that, in the case of a monodisperse initial
distribution, the size distribution of each generation is monodisperse as well. This is due to
the fact that, as the particles of generation i ‘move’ to smaller sizes, the particles of generation
i−1 ‘move’ in such a way that (at every instance) the fragments they produce have the current
size of the particles of generation i. Summarizing, the solution of equation (24) for constant
breakage rate and monodisperse binary erosion kernel is

f (x, t) = eεt
∞∑
i=1

1

εi−1

t i−1

(i − 1)!
f0

(
eεt

εi−1

)
. (39)

The evolving particle size distribution (based on the above equation) for an initial distribution
f0(x) = xe−x is shown in figure 1 for ε = 0.1 and two values of time (t = 0.3 and 0.4). Figure 2
is similar to figure 1 but with the narrower initial distribution f0(x) = (256/6)x3e−4x . In both
cases the multimodality of the fragment distribution is evident. However, with broader initial
distributions overlapping between the generations increases.

For a more general kernel than the binary monodisperse one there is no analytical solution,
although some features of the solution can be obtained using the moments equation (30). Thus,
the mean size of generation i is found to be xmi = zi−1

m e−gt , where zm = g

v−1 is the mean size
of the fragment size distribution. The dispersivity of generation i is σ = σ0 + (i − 1)σfragment,
where σfragment = ln( (v−1)J2

g
), may be called the dispersivity of the fragment size distribution

and v is defined in equation (9). This means that the dispersivity of each generation tends
to increase, compared with the dispersivity of the preceding one, by an amount equal to the
dispersivity of the fragment size distribution. For the monodisperse kernel σfragment = 0; thus,
all the generations have the same dispersivity σ0 as the initial distribution (already shown). As
a final comment for the constant-breakage-rate (ν = 0) case, it is noted that by substituting
ν = 0 the approximate system for the moments (33) degenerates to the exact one (29), which
is closed and the approximation procedure is unnecessary.
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Figure 2. Particle size distribution for constant breakage rate and monodisperse binary erosion
breakage kernel (ε = 0.1) for two values of breakage time. Initial condition f0(x) =
(256/6)x3e−4x .

4.3. Study of the i = 2 generation

In order to examine the influence of the breakage rate exponent ν on the fragment size
distribution, the system (33) is solved numerically, with a fourth-order Runge–Kutta integrator
with self-adaptive step and prespecified accuracy [47], for several values of ν, monodisperse
binary erosion kernel (ε = 0.1) and monodisperse initial distribution. The evolution of the
mass fraction for the i = 2 generation is shown in figure 3. As ν increases the evolution
becomes slower but the maximum mass fraction ϕ2 increases. This is due to the ‘sharpening’
of the dependence of the breakage rate on the particle size. Here ‘sharp’ dependence means
decreasing rate of mass loss with decreasing size, which results in mass accumulation in
the generation. The evolution of the dispersivities which correspond to the mass fractions of
figure 3 is shown in figure 4. The dispersivity initially increases and after reaching a maximum
decreases. For large values of ν the maximum dispersivity appears at large values of the mass
fraction ϕ2 but as ν decreases it occurs at negligible ϕ2. In general the absolute value of the
dispersivity remains small (maximum = 0.15), keeping in mind that for ν = 0 σ2 is identically
zero.

4.4. Study of the N = 2 case

To obtain an insight into the structure of the solution some simple cases will be examined, for
N = 2, power breakage rate and monodisperse erosion kernel. The general solution for f1

(irrespective of N and erosion kernel) with power breakage rate is

f1(x, t) = (x−ν − gνt)−(ν+1)/ν

xν+1
f0[(x−ν − gνt)−1/ν] for ν �= 1 (40)

where xν < 1
gνt

. It is noted that if this condition is not satisfied f1(x, t) = 0. This discontinuity
follows from the fact that because of particle erosion the maximum particle size at time t is
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x = ( 1
gνt

)1/ν . For the limiting case ν = 0 the result has already been given in the analysis of the
constant-breakage-rate case. For N = 2 and monodisperse breakage kernel, equation (27c)
takes the form

f2(x, t) =
∫ t

0
b(x/ε)f1(x/ε, t

′) dt ′. (41)



1738 M Kostoglou and A J Karabelas

Substituting f1 from equation (40) and using a new variable of integration results in

f2(x, t) = 1

x

∫ ((x/ε)−ν−ενt)−1/ν

x/ε

f0(z) dz

or

f2(x, t) = 1

x

∫ xeεt /ε

x/ε

f0(z) dz for ν = 1.

(42)

4.5. Erosion breakage with size cut-off

In many practical cases there is a critical size xc for the parent particles; i.e. particles of size
smaller than xc (referred to as the cut-off size) do not suffer breakage. For example, in the
turbulent flow of liquid–liquid dispersions the flow field cannot cause breakage of droplets
below a certain size related to the turbulent eddy structure [48]. This behaviour appears to
be general in nature since every physical system has a characteristic cut-off size, even if it is
only at the quantum level. The breakage problem with a size cut-off has been formulated and
solved for power breakage rate and kernel by Huang et al [1]. The existence of the critical size
xc has the consequence that after sufficient time a static steady-state distribution is established
because all particles are smaller than xc. If xc is in between the smaller parent particle and the
larger fragment (i.e. f0(x) = 0 for x > xc/ε1) then the above problem is simply described
by equation (25a) for x > xc and by equation (25c) for N = 2 and x < xc. The steady-state
distribution can be obtained directly, avoiding any transient results, by a modification of the
method developed by Kostoglou and Karabelas [49] for general breakage. As regards the fate
of parent particles, it can be easily shown that in the steady state they are accumulated in the
region between xc and xc/(1 − ε2). To obtain the steady-state distribution of the fragments,
the following function is introduced:

L(x) =
∫ ∞

0
b(x)f1(x, t) dt . (43)

The two equations of this problem are integrated with respect to x from 0 to ∞, leading to a
new time-independent problem:

−f0(x) = ∂gxL(x)

∂x
for x > xc (44)

f2(x,∞) =
∫ xc/ε1

x/ε1

1

y
P1(x/y)L(y) dy for x < xc. (45)

Solving (44) for L(x) and substituting in (45) the following result is obtained:

f2(x,∞) =
∫ (xc/ε1)

x/ε1

∫ (xc/ε1)

y

1

gy2
P1(x/y)f0(z) dy dz for x < xc. (46)

5. Concluding remarks

A general study of the breakage problem with a homogeneous kernel of erosion type is
attempted in this paper. The use of the conventional breakage equation to solve a problem
of this type is inefficient because of the disparity of scales introduced by the size difference
between the fragments. For improvement, a new equation (erosion-breakage equation) is
derived as a first-order perturbation expansion of the original problem, with respect to the
fractional mass reduction of the parent particle per breakage event. However, handling the
new equation is still difficult because its solution is multimodal; thus, it is decomposed into a
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system of equations for the modes using a method of generations. This system of equations is
solved analytically with the method of characteristics. Additionally, an approximate method
of solution is demonstrated, based on the methods of moments with log-normal distribution.
Using the above methods of solution, explicit results are presented for several simple cases.
These results reveal features which would be impossible to obtain by a numerical solution of
the conventional breakage equation. Of special interest is the existence (for a particular case)
of self-similarity solutions at the level of generation, in addition to the well known global self-
similarity solution of the homogeneous breakage equation. It is believed that the methodology
developed in this paper has definite advantages, over any other available method, for analysing
processes where cascade fractional breakage occurs, with the size of the larger fragment close
to that of the parent particle.
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